- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chakraborty, Tanmoy (2)
-
Lokala, Usha (2)
-
Panahiazar, Maryam (2)
-
Sheth, Amit (2)
-
Srivastava, Aseem (2)
-
Akhtar, Md Shad (1)
-
Akhtar, Md. Shad (1)
-
Dastidar, Triyasha (1)
-
Dastidar, Triyasha Ghosh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of 150k items (both posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adapt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task.more » « less
-
Lokala, Usha; Srivastava, Aseem; Dastidar, Triyasha Ghosh; Chakraborty, Tanmoy; Akhtar, Md Shad; Panahiazar, Maryam; Sheth, Amit (, Proceedings of the International AAAI Conference on Web and Social Media)Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of 150k items (posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adopt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task.more » « less
An official website of the United States government

Full Text Available